Package: EQRN 0.1.1

EQRN: Extreme Quantile Regression Neural Networks for Risk Forecasting

This framework enables forecasting and extrapolating measures of conditional risk (e.g. of extreme or unprecedented events), including quantiles and exceedance probabilities, using extreme value statistics and flexible neural network architectures. It allows for capturing complex multivariate dependencies, including dependencies between observations, such as sequential dependence (time-series). The methodology was introduced in Pasche and Engelke (2024) <doi:10.1214/24-AOAS1907> (also available in preprint: Pasche and Engelke (2022) <doi:10.48550/arXiv.2208.07590>).

Authors:Olivier C. Pasche [aut, cre, cph]

EQRN_0.1.1.tar.gz
EQRN_0.1.1.zip(r-4.5)EQRN_0.1.1.zip(r-4.4)EQRN_0.1.1.zip(r-4.3)
EQRN_0.1.1.tgz(r-4.5-any)EQRN_0.1.1.tgz(r-4.4-any)EQRN_0.1.1.tgz(r-4.3-any)
EQRN_0.1.1.tar.gz(r-4.5-noble)EQRN_0.1.1.tar.gz(r-4.4-noble)
EQRN_0.1.1.tgz(r-4.4-emscripten)EQRN_0.1.1.tgz(r-4.3-emscripten)
EQRN.pdf |EQRN.html
EQRN/json (API)
NEWS

# Install 'EQRN' in R:
install.packages('EQRN', repos = c('https://opasche.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/opasche/eqrn/issues

Pkgdown site:https://opasche.github.io

On CRAN:

Conda:

4.24 score 7 stars 18 downloads 70 exports 41 dependencies

Last updated 7 days agofrom:50f29e6221. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 21 2025
R-4.5-winOKMar 21 2025
R-4.5-macOKMar 21 2025
R-4.5-linuxOKMar 21 2025
R-4.4-winOKMar 21 2025
R-4.4-macOKMar 21 2025
R-4.4-linuxOKMar 21 2025
R-4.3-winOKMar 21 2025
R-4.3-macOKMar 21 2025

Exports:check_directorycompute_EQRN_GPDLosscompute_EQRN_seq_GPDLossdefault_deviceend_doFuture_strategyEQRN_excess_probabilityEQRN_excess_probability_seqEQRN_fitEQRN_fit_restartEQRN_fit_seqEQRN_loadEQRN_predictEQRN_predict_paramsEQRN_predict_params_seqEQRN_predict_seqEQRN_saveexcess_probabilityFC_GPD_netFC_GPD_SNNfit_GPD_unconditionalget_doFuture_operatorget_excessesGPD_excess_probabilityGPD_quantilesinstall_backendlagged_featureslast_elemloss_GPDloss_GPD_tensormake_foldsmean_absolute_errormean_squared_errormts_datasetmultilevel_exceedance_proba_errormultilevel_MAEmultilevel_MSEmultilevel_pred_biasmultilevel_prop_belowmultilevel_q_lossmultilevel_q_pred_errormultilevel_R_squaredmultilevel_resid_varperform_scalingpredict_GPD_semiconditionalpredict_unconditional_quantilesprediction_biasprediction_residual_varianceprocess_featuresproportion_belowQRN_fit_multipleQRN_seq_fitQRN_seq_predictQRN_seq_predict_foldwiseQRN_seq_predict_foldwise_sepQRNN_RNN_netquantile_exceedance_proba_errorquantile_lossquantile_loss_tensorquantile_prediction_errorR_squaredRecurrent_GPD_netroundmsafe_save_rdssemiconditional_train_valid_GPD_lossSeparated_GPD_SNNset_doFuture_strategysquare_lossunconditional_train_valid_GPD_lossvec2matvector_insert

Dependencies:bitbit64callrclicodetoolscolorspacecorodescdigestdoFutureevdfarverforeachfuturefuture.applyglobalsglueismeviteratorsjsonlitelabelinglatticelifecyclelistenvmagrittrMatrixmgcvmunsellnlmeparallellyprocessxpsR6RColorBrewerRcpprlangsafetensorsscalestorchviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Check directory existencecheck_directory
Generalized Pareto likelihood loss of a EQRN_iid predictorcompute_EQRN_GPDLoss
Generalized Pareto likelihood loss of a EQRN_seq predictorcompute_EQRN_seq_GPDLoss
Default torch devicedefault_device
End the currently set doFuture strategyend_doFuture_strategy
Tail excess probability prediction using an EQRN_iid objectEQRN_excess_probability
Tail excess probability prediction using an EQRN_seq objectEQRN_excess_probability_seq
EQRN fit function for independent dataEQRN_fit
Wrapper for fitting EQRN with restart for stabilityEQRN_fit_restart
EQRN fit function for sequential and time series dataEQRN_fit_seq
Load an EQRN object from discEQRN_load
Predict function for an EQRN_iid fitted objectEQRN_predict
GPD parameters prediction function for an EQRN_iid fitted objectEQRN_predict_params
GPD parameters prediction function for an EQRN_seq fitted objectEQRN_predict_params_seq
Predict function for an EQRN_seq fitted objectEQRN_predict_seq
Save an EQRN object on discEQRN_save
Excess Probability Predictionsexcess_probability
Tail excess probability prediction method using an EQRN_iid objectexcess_probability.EQRN_iid
Tail excess probability prediction method using an EQRN_iid objectexcess_probability.EQRN_seq
MLP module for GPD parameter predictionFC_GPD_net
Self-normalized fully-connected network module for GPD parameter predictionFC_GPD_SNN
Maximum likelihood estimates for the GPD distribution using peaks over thresholdfit_GPD_unconditional
Get doFuture operatorget_doFuture_operator
Computes rescaled excesses over the conditional quantilesget_excesses
Tail excess probability prediction based on conditional GPD parametersGPD_excess_probability
Compute extreme quantile from GPD parametersGPD_quantiles
Install Torch Backendinstall_backend
Covariate lagged replication for temporal dependencelagged_features
Last element of a vectorlast_elem
Generalized Pareto likelihood lossloss_GPD
GPD tensor loss function for training a EQRN networkloss_GPD_tensor
Create cross-validation foldsmake_folds
Mean absolute errormean_absolute_error
Mean squared errormean_squared_error
Dataset creator for sequential datamts_dataset
Multilevel 'quantile_exceedance_proba_error'multilevel_exceedance_proba_error
Multilevel quantile MAEsmultilevel_MAE
Multilevel quantile MSEsmultilevel_MSE
Multilevel prediction biasmultilevel_pred_bias
Multilevel 'proportion_below'multilevel_prop_below
Multilevel quantile lossesmultilevel_q_loss
Multilevel 'quantile_prediction_error'multilevel_q_pred_error
Multilevel R squaredmultilevel_R_squared
Multilevel residual variancemultilevel_resid_var
Performs feature scaling without overfittingperform_scaling
Predict semi-conditional extreme quantiles using peaks over thresholdpredict_GPD_semiconditional
Predict unconditional extreme quantiles using peaks over thresholdpredict_unconditional_quantiles
Predict method for an EQRN_iid fitted objectpredict.EQRN_iid
Predict method for an EQRN_seq fitted objectpredict.EQRN_seq
Predict method for a QRN_seq fitted objectpredict.QRN_seq
Prediction biasprediction_bias
Prediction residual varianceprediction_residual_variance
Feature processor for EQRNprocess_features
Proportion of observations below conditional quantile vectorproportion_below
Wrapper for fitting a recurrent QRN with restart for stabilityQRN_fit_multiple
Recurrent QRN fitting functionQRN_seq_fit
Predict function for a QRN_seq fitted objectQRN_seq_predict
Foldwise fit-predict function using a recurrent QRNQRN_seq_predict_foldwise
Sigle-fold foldwise fit-predict function using a recurrent QRNQRN_seq_predict_foldwise_sep
Recurrent quantile regression neural network moduleQRNN_RNN_net
Quantile exceedance probability prediction calibration errorquantile_exceedance_proba_error
Quantile lossquantile_loss
Tensor quantile loss function for training a QRN networkquantile_loss_tensor
Quantile prediction calibration errorquantile_prediction_error
R squaredR_squared
Recurrent network module for GPD parameter predictionRecurrent_GPD_net
Mathematical number roundingroundm
Safe RDS savesafe_save_rds
Semi-conditional GPD MLEs and their train-validation likelihoodssemiconditional_train_valid_GPD_loss
Self-normalized separated network module for GPD parameter predictionSeparated_GPD_SNN
Set a doFuture execution strategyset_doFuture_strategy
Square losssquare_loss
Unconditional GPD MLEs and their train-validation likelihoodsunconditional_train_valid_GPD_loss
Convert a vector to a matrixvec2mat
Insert value in vectorvector_insert